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Executive Summary
This deliverable is based on extensive data sets and modelling work carried out
thereupon, and seeks to introduce the concepts of explainability in the energy domain in
two different scopes and subcases; that of the country level forecasts as well as, more
importantly, that of the building level ones.

Explainability considerations are indeed in their infancy in the energy literature. Very
recently (2022) the issue has started receiving some attention in the building related
literature, while at the country level, we believe we are the first ever to raise the issue in
the literature (2021).

The building energy forecasting literature is predominantly based on neural network
(NN) approaches. Paradoxically, the key approach is to extract explanations from such
models. The idea of looking at genetic programming (GP) approaches and exploring
their potential to provide for explainability has just not yet received any attention.

Thus, the challenge addressed in this deliverable as regards the building subcase is to
benchmark the performance of dominant NN models against emerging GP approaches.
This benchmark needs to cover both accuracy as well as explainability issues. Real time
data from the BMS of an office building has been used as a data source for this
extensive benchmarking exercise. Metrics to be used for the benchmarking are the
typical ones used for model accuracy evaluation: MAE, RMSE and MAPE

At the time of completion of this work no conclusive evidence has been yet reached. In
fact, although the accuracy of the GP approaches seems well comparable with the NN
approaches, it remains to be seen whether, especially the symbolic expressions that can
be derived thereof can be compact enough to be used as basis for explanation. Of course
it remains to be seen what the complexity of these equations will be and whether they
can provide for user friendly explanations. However this comes later in the agenda. At
this point, the key issue is the benchmarking issue.

As regards the country level subcase we have practically introduced local explanation
concepts in terms of counterfactual analysis. Some interesting results have been reached
and have been published, shedding light on especially controversial issues in the
literature, such as the demand elasticity of fuel prices/ taxes.

Industry stakeholder inputs have been sought and taken account of in the roll out of the
work. These issues are partially also reported in D 2.1. However, this deliverable
presents a more comprehensive overview of the multifold expert validation activities
and the insights that have been achieved through this important, ongoing and
intensifying activity.

In short, topics such as counterfactual analysis and feature importance were highlighted
as to their importance. Symbolic expressions were not discussed with the stakeholders
in any significant detail. The main reason is that GP approaches are totally outside the
current state of the art so no true feedback could possibly result.

In the coming period the challenges are as follows:
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● As regards the building subcase,
○ We look forward to exploring the TRUST AI framework that will allow

us to prune the resulting GP expressions in search of compact and
meaningful expressions that can provide better insights on building
performance as well as several side issues (seasonality differences) and
the ability of users to interact with them in a rational, energy
efficiency-wise way.

○ We look forward to integrating these developments within a commercial
venture that is unfolding at this moment in time, outside TRUST AI,
which however can serve as a practical testbed of making use of the
TRUST AI framework services, and making use of the GP and other
models customised within it.

● As regards the country subcase
○ We look forward to introducing GP approaches to see how they perform

vis a vis the dominant NN ones again in terms of comparative accuracies
as well as explainability potential of the underlying symbolic
expressions.

○ We look forward to exploring the concept of so-called ensemble
counterfactuals, whereby all three consumption areas (residences,
transport and industry) will be brought together to elaborate local
explanation concepts and related fuel price and tax elasticity.
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1. Introduction
The deliverable presents some early trials on the Energy Use Case, in both subcases
investigated, country and building level forecasting. The key aspiration of the
deliverable is to investigate the potential of explainability and GP models in
particular in the energy realm and to benchmark it against traditional neural
network (NN) based approaches. This objective will underlie all future work and
technical development, and will define the concrete TRUST-AI framework services,
pertinent for the energy use case.

In the course of this work we have significantly expanded the initial (work-programme)
scope of the energy use case. Although the building level forecasting continues to
assume the predominant position in the research we have also included one more
variant, the country level. Thus, the energy use case comprises all possible scopes of
demand forecasting which in summary are:

1. building level demand forecasting, whereby the forecast is carried out one day/
one week ahead with an hourly resolution. This approach is highly pertinent also
for aggregate level forecasting, whereby the forecast is, again, carried out one
day/ one week ahead with an hourly resolution. Aggregate demand assumes
more and more importance, as concepts such as energy communities, micro
grids, etc., emerge and proliferate as key components of the energy transition.

2. country level forecasting, whereby the forecast is carried out on a yearly
resolution.

The work described in [1] will be referred to as the short term use case, while [2] as
the respective long term use case. Additionally, in short term forecasting we will
focus on electricity, rather than building energy at large. There is no inherent
limitation in this decision. It is driven by the fact that electricity is gaining increasing
interest, as electrification is a key direction in energy transition. Additionally, electricity
meters are becoming more and more available and operate at high resolutions. This is
not the case for gas/ oil meters. Overall however, the electricity case can be seamlessly
expanded to any building energy carrier, provided data are in place. In the long term use
case, both electricity as well as final energy consumption are considered.

The deliverable builds on the specification document, deliverable D 7.1, while a number
of contacts and interviews with industry stakeholders (reported in D 2.1) have provided
significant orientation inputs.

The deliverable will guide all future work related to the energy use case, whereby
explainability will be practically implemented in the energy demand forecasting
approach.

Results achieved in this deliverable have been presented in a global energy related
conference, published in a high impact factor journal and in two peer-reviewed flash
papers. The references will follow in the text below.

In the text below we will present:
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● a description of the demand forecasting problem with a focus on the
decisions it can support (Section 2)

● a summary of the literature approaches in the area (Section 3)
● the description of the approach pursued in all two sub-scopes/ cases as far as

data and modelling is concerned and the results that have been reached
(Section 4)

● a first concept of explainability, for all two sub-scopes, based on the above
results as well as industry inputs (Section 5)

● the plan for the future development of the use case and the potential for
uptake in major, related, product development that is carried in at this
moment within the POLIS-21 group. Although this technology development is
not within the scope of TRUST-AI it nevertheless offers an important
opportunity to practically up-take explainability concepts and illustrate in a
tangible way the added value that can result thereof. Additionally, the time plan
is very much aligned with that of TRUST-AI which makes this uptake fully
realistic (Section 6).

2. Problem description. Linking
demand forecasting to decisions

Below, we will concisely review the formulation of the problem in the case of short
term and long term forecasting and especially highlight the specific decisions this is
meant to support. In technical terms, we will seek to link predictive analytics (i.e.,
forecasting) to the prescriptive and decision support layer.

An extensive description on all underlying issues is included in Deliverable D 7.1 and
will not be reiterated here. Below, we will just concisely summarise the key decisions
identified and also refer to some additional insights that have emerged in the meanwhile
that deserve some consideration.

2.1 The short term use case (buildings and
aggregate demand) electricity demand

Forecasting can provide valuable insight on the operation of a building and can
help reveal a number of issues associated with it, which may demand our attention.
For this to happen, one typically compares the forecast with the actual consumption that
occurred in a given period. Should the latter be appreciably higher, this is then a clear
signal of something “going wrong”.

In D 7.1 we have in detail identified that forecasting is highly important in three
directions (systems, behaviour, and demand response schemes)
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● For energy systems, forecasting can support decisions related to predictive
maintenance, leading to a reduction of the building services' downtime/cost of
maintenance.

● For behavioural issues, forecasting can support decisions related to changes of
operational settings and especially user behaviour change. For example if the
deviation noted is tracked down to excess heating due to high thermostat settings
this may trigger a decision to lower the settings an effort towards behavioural
change, i.e., trying to communicate to users the need to be cautious about this
practice as it has an important impact upon consumption.

● For demand response schemes, forecasting would support the evaluation of the
various pricing schemes offered and assist in analysing the associated risks.

Explainability is then defined, as all approaches aim at presenting these decisions in
a user friendly way to their recipients. The figure below illustrates the three above
decision support scenarios and therefore the associated explainability.

Figure 1: Three types of demand forecasting based decisions in the short term use case

2.1.1 Revisiting the short term use case in the light in newer (post D 7.1)
information

In the period since the formulation of the exact requirements in D 7.1 and especially in
the course of interaction with stakeholders, it was highlighted that from the three above
scenarios, and from the explainability point of view

Demand response carries the greatest and most innovative
potential for explainability as it is there where the inherent

uncertainty prevents such schemes from taking off to their full
potential. Thus, explanations, particularly in this case could

unleash significant value.
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2.2 The long term use case (country
level) electricity and final energy
consumption demand

In the case of country/ long term level forecasting the key pertinent problem that was
reported in D 7.1 was

● to support decisions leading to a specific CO2 emission reduction goal

Figure 2: Country level forecasting decisions

2.2.1 Revisiting the long term use case in the light of newer (post D 7.1)
information

Country level forecasting (electricity and final energy consumption) is typically
addressed separately in its three key ‘domains’; residences, transport and industry. In
our early modelling trials we have also treated it and published findings (discussed
below) in this perspective.

However, during consortium discussions an interesting and value adding idea has been
raised, specifically by Un. Tartu. Instead of treating each of the three domains separately
to consider them all all together and formulate decisions collectively across all three
domains, as a so-called ensemble model counterfactual. This is shown in the figure
below.
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Figure 3: Ensemble model counterfactual for energy consumption and CO2 emissions

3. Explainability in the energy
literature and the TRUST-AI
approach

In D 7.1 we have extensively referred to the types of data used in the literature for
demand forecasting in both long and short term (paragraph 3.3, page 19- 28). This
discussion will not be reiterated here; When discussing below the modelling carried out
we will present the TRUST-AI specific approach with some remarks drawn from the
literature.

In this section we will briefly discuss a review of explainability approaches that have
appeared in the energy forecasting literature and also present the approach as to what
exactly will be done in TRUST-AI as regards explainability.

3.1 Explainability in the energy
demand forecasting literature

Explainability/ Interpretability has not yet received any significant attention in the
energy literature. Following an exhaustive review we can safely claim that our early
approach for interpretable county level forecasting1 was the first ever to be
published for forecasting in this particular long term context.

1 Sakkas, N.; Yfanti, S.; Daskalakis, C.; Barbu, E.; Domnich, M. Interpretable Forecasting of Energy
Demand in the Residential Sector. Energies 2021, 14, 6568. https://doi.org/10.3390/en14206568
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In the short term forecasting domain, only after 2019 did the term explainability show
up in the literature, in a rather exploratory way. And only very recently, in 2022 more
robust explainable approaches appeared in the literature of electricity forecasting
problems.

In a first approach2 the authors state that “there are several attempts to explain the result
of deep learning through the analysis of the input attributes that influence the
prediction, but they lack appropriate explanation because of ignoring the time-series
property of the input data. In this paper, we propose a deep learning model to explain
the impact of the input attributes on the prediction by taking account of the long-term
and short-term properties of the time-series forecasting.”

In a second one3 the authors claim the following: “our prediction model aggregates both
consumption and weather information and feeds them to the embedding proposed layers
in order to extract the temporal and environmental hidden features. Afterwards, we
established an LSTM-based neural network model to forecast energy consumption. The
energy consumption values generated by our model are evaluated and analysed by
several error metrics. Finally, to increase our model’s trust, we rely on an agnostic
method (ad-hoc and causality-based) to explain the generated predictions. However,
towards scalability, the embedding layer in our system makes us lose the traceability
of the original features. Thus, none of the well-known explainability frameworks
(LIME, SHAPE) can be applied”

3.1.1 Discussion

The need for explainable approaches is clearly emerging. We would argue that the full
potential is not acknowledged in the literature. Explainability is in its first steps and as
such, it is treated as a scientific goal, without a full realisation of the underlying
business cases it may serve. For example, the fact that explainability is a high priority
and requirement for demand response practices to take off does not surface in the
literature.

The approaches pursued are tied to the dominant deep learning/ LSTM (long short term
memory) modelling paradigm. The focus is on prioritising feature importance, which is
indeed important, but ideas such as genetic programming and derivation of symbolic
expressions are, for the moment, completely lacking.

TRUST AI bears the potential to provide significant input to this emerging discussion
and lay out novel methods and models to approach the issue of short term forecasting.
Benchmarking performances of these approaches against the currently dominant
LSTM approach would greatly add to the credibility of the results.

3 Mouakher, A.; Inoubli, W.; Ounoughi, C.; Ko, A. EXPECT: EXplainable Prediction Model for
Energy ConsumpTion. Mathematics 2022, 10, 248. https://doi.org/ 10.3390/math10020248

2 Jin-Young Kim & Sung-Bae Cho (2022): Predicting Residential Energy Consumption by
Explainable Deep Learning with Long-Term and Short-Term Latent Variables, Cybernetics and
Systems, DOI: 10.1080/01969722.2022.2030003
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As discussed we can also take long term forecasting explainability one step further,
by introducing the ensemble counterfactual model (see Figure 3).

3.2 Explainability in the energy use
case in TRUST-AI.

The figure below4 provides for a categorisation of all types of explanations; [b], [c] and
[d] are collectively referred to as global or model level explanations whereas [e] and [f]
are the instance of local level explanations.

Figure 4: Literature categorisation of explainability. Where does the value for energy
use case lie? Adapted from Nadia and Marco (2021)

What exactly is pertinent for the energy use case? We will discuss this point with
reference to the illustration of Figure 4 and based on literature and stakeholder insights.

3.2.1 Global level (model) explainability [b], [c], [d]

Approach [b]. This approach implies a global level explanation which is derived from a
black box model. Although this is currently the dominant approach in the literature, it is
not something that will be particularly experimented upon in TRUST-AI. However, due
to the emphasis it receives in the literature some benchmarking may indeed be value
adding.

4 Nadia, B.; Marco, H.F. A Survey on the Explainability of Supervised Machine Learning. J. Artif. Intell.
Res. 2021, 70, 1–74.
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Approach [c]. This approach is about deriving a white box model and basing the
explanations upon it. A white box model could, for example, be a symbolic expression,
something that is a key consideration in TRUST-AI. Indeed symbolic expressions could
provide for a very good approach in both short term and long term forecasting.
Especially, in the key short term forecasting, seasonal symbolic expressions could
help highlight the seasonal differences and provide very targeted insight on the
building performance. This would be an important innovation of a potentially
important value. Thus approach [c] is highly relevant, especially for the short term
investigation

Approach [d]. This is also potentially an area of interest. For example a black-box
model may outperform an interpretable one. In this case, a surrogate (e.g., GP) can be
used to explain it.

As a summary, as regards model level explainability, approach [c] is
highly pertinent, especially for the short term/ building level

investigation, where crisp seasonal and building models could
potentially arise.

3.2.2 Local level (instance) explainability [e], [f]

This type of explainability, especially in the shape of counterfactuals, emerged as a key
requirement for building level approaches as well as for country/ long term
approaches (see above Figures 2 & 3)

As a summary, as regards instance level explainability/
counterfactual analysis will be applied, preferably (but perhaps

not necessarily) via approach [c] avoiding the black box
altogether.

Finally, one more important requirement that arose from the stakeholder discussions (as
was that of feature importance, i.e., the ability to provide insights on how every
feature of the model contributed to its accuracy/ explainability. In fact, this is a key
purpose of explainability highlighted in the literature up to this day.

4. The short term/ building level
solution approach

4.1 Overview
An office building (of approximately 1000 sq. m.) has been used for data collection. It is
equipped with real time data monitoring technology provided by the POLIS-21 group.
The respective real time dashboards are publicly accessible at:
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https://wsn.wirelessthings.biz/v2/stef

The dashboard includes both a private (login required) and a public area (no login
required). The data used is publicly available e.g., no particular authorisation is
required. To this extent all data used in the modelling below is publicly traceable on
the above dashboard.

The office building experienced a significant change of use due to the COVID
pandemic in the years 2020/2021. Normal operation has only recently been restored, as
of Jan. 2022 and continues so in the present. For this reason data collection, which will
need to span over a year to cover all seasonal profiles, will need to keep on going till the
end of the coming year. At this moment, a six month dataset, corresponding to the
winter (Jan-Mar) and spring months (Apr-Jun) has been collected and used for the
modelling exercise below. Obviously this activity will carry on till the end of 2022 to
reach conclusive evidence as regards models’ benchmarking (accuracy and
explainability).

4.2 Feature engineering
We will review below the data/features extracted and used in the case of the short term
building level forecasting. We will start from a concise literature review on the currently
most popular approaches for the particular problem.

4.2.1 The State of the Art

In a recent review paper5 where all current approaches in electricity forecasting are
considered, the results- as far as modelling methods and features considered are
concerned- are shown in the table below.

Table 5: The state of the art on models and features used in building electricity
forecasting

5 M. Daut et al, “Building electrical energy consumption forecasting analysis using conventional and
artificial intelligence methods A review”, Renewable and Sustainable Energy Reviews 70 (2017)
1108–1118 http://dx.doi.org/10.1016/j.rser.2016.12.015
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From the table above as far as modelling is concerned one can conclude, according to
this paper, that:

● Artificial Neural Network (ANN) approaches are by far the dominant
approach in the literature

● Hybrid approaches whereby ANN is combined with particle swarm
organisation (PSO) techniques are also been increasingly used

● As laid out in the above section, there are no explainability focussed
approaches (e.g GP/ symbolic expressions, etc.) reported in the literature.

From the table above as far as feature engineering is concerned one can conclude that
approaches typically rely on

● historical load data
● weather data (mostly temperature & wind affecting losses and therefore

heating/ cooling as we well as and cloud data affecting lighting)
● indoor temperature
● type of date (mostly the distinction between holidays and work-days)

In D 7.1, page 19 we have presented a more detailed view on features; indeed as it is
shown there many other approaches have been suggested in the literature; however after
two three decades of efforts in the area the above table presents some rather conclusive
evidence as to what really makes sense in terms of features.

4.2.2 The opted feature approach

Here are some comments with regard to the features presented and prioritised in the
above table.

● Historical data are important and have been consistently used in the modelling
approaches. Also, because the trial building is equipped with smart meters the
sourcing of this type of data is easy. Therefore historical data will indeed be
used in the modelling approach. As this type of data is typically sourced every
3-4 minutes, some pre-processing will be due in order to reach hourly values of
energy consumed. It should be recalled that the hourly resolution is the target
one. Pre-processing may also be required to deal with possible data loss
incidents as well as wrong and very high values that may due to some technical
issue arise. This pre-processing has been included in the data service, the
https://ds.leiminte.com data sharing platform that has been implemented in D 1.2
as an open data sharing platform with open pull/ push APIs.

Issue to decide upon: Although history is a key feature in the forecasting
process, the number of days one needs to look back in time is an issue to “look”
back in time is included in terms of something that literature has converged
upon. Typical approaches include three days, and one week. Additionally we
would propose to also consider the same day of the past week.
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At this moment the weekly pattern is used. Also, ‘day of week’ has been
considered either in supplement or on its own.

● Weather data will also be used; although in both buildings in situ collection is
in place we will prefer to use the connectivity to the local weather station to
source the weather data. WT uses the weatherstack provider for such purposes.
By weather data we will refer to temperature and wind. At a later and more
refined stage we may also consider cloud conditions to the extent these may
affect lighting consumption. We can then easily retrieve the historical cloud data
pertaining to our study period and use them in the models. The image below
illustrates the respective part of the dashboard. Humidity will not be used; only
temperature and wind data

Figure 5: Weather data sourcing from weather service connected to
(http://weatherstack.com)

● Lastly, we will use indoor temperature data, sourced from in situ sensors,
which report their data, only when required, e.g., every time there is some
significant temperature change; in this way the battery lasts over at least a year.
Indeed, temperature data do not show very often in the feature set pertaining to
the modelling of our scope. However indoor data has an important advantage,
especially pertinent in our TRUST-AI focus. It is the only feature that can be
acted upon, and can therefore participate in counterfactual based decisions.
Due to this unique quality we will use indoor temperature.

● As this modelling is based on winter data it seems unlikely that calendar
data (day of the year and/ or the hour of the day) would make much sense.
This should be included and evaluated when a yearly pattern is available.
However, in the current- winter- modelling as mentioned above, the ‘day of the
week’ could be interesting to investigate. In the final solution we look forward
to integrating a calendar functionality that will account also for holidays and
will be customised for any particular site that will therefore completely
streamlining the use of calendar data.

● In the current modelling we will restrict to energy and not cost forecasting.
Cost forecasting will be important in the second stage and will require pricing
data to be incorporated. This, in some cases may be trivial but in the general
case it can be very complex as it may be informed by consumption levels and
other information. The final solution will have embedded a pricing tariff
functionality, custom for any particular region that will therefore completely
streamline the use of such pricing data in the cost forecasting.

18
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The following table summarises the discussion both for the early as well as for the final
solution. The additional features are shown in italics

Features used for early trials Features used for final solution

history consumption loads; various trials

● seven days
● same day past week

history consumption loads; various trials

● seven days
● same day past week

calendar data
● day of the week
● hour of the day

calendar data
● day of the week
● hour of the day
● day of the year
● holidays

weather data
● temperature
● wind

weather data
● temperature
● wind
● cloud coverage

indoor conditions
● temperature

indoor conditions
● temperature

flexible pricing tariffs for cost forecasting

Table 1: Features for trial and final solution; short term forecasting

4.3 The modelling approach
Below we discuss the data/ models for the office building. Data were collected for
Jan-Mar ‘22 and later for Apr-Jun ‘22. Some changes were introduced in the second
batch of data. All modelling was done in jupyter notebooks all of whom are publicly
online at

https://drive.google.com/drive/folders/1Y7mwyrW_4FsKnHHW
MHhzmpBr7XPZ4-U1?usp=sharing

In this folder besides the notebooks also some denormalized result validation is
presented to have a more hands on feeling of the forecasting performance.

Real time data from the WT were extracted from the BMS. Data was cleaned and put on
the same resolution, that of an hour.

In the final solution the data will be pushed via the API in the open DS platform
(ds.leiminte.com) and pulled again via the API into the final solution. Ideally all this
cleaning should be done automatically by the API.

4.3.1 Introduction to the modelling approaches
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A number of forecasting models have been developed and the approach is discussed
below. In all cases, a 24h day ahead electricity forecasting is the output of the
models. This is the more practical and user friendly approach.

Indeed, an alternative option would be for a user running the model today, let us say at
17.00, to return the forecasting from 18.00 today till 17.00 tomorrow. However, this
approach would rely on the current hour and this could lead to potential confusion.
Instead, if we run the forecasting for tomorrow, always for the timeframe between
00.00- 23.00, then the result will always be the same, regardless of the time the model is
run. This is superior in terms of user friendliness while not compromising the potential
use cases of the forecasting results which typically relate to the next day (and beyond)
load switching or other behavioural change.

At first, a baseline/ naive model needs to be defined; such a model shall serve as a
baseline to investigate the benefits in terms of accuracy when introducing feature
combinations as discussed above.

Baseline: In the baseline model, the forecasting is just as the last day consumption.
Thus, if the naive forecasting is done on some time of today (let us assume it is a
Thursday [t]) it will provide forecast for tomorrow (Friday, [t+1]) and the result will
simply use the yesterday consumption data (Wednesday, [t-1], from 00.00-23.00)

Additionally it is important to note that these models have been developed via two
distinct approaches as follows:The first one will be based on LSTM (long short term
memory) approaches which is currently among the most frequently used AI approaches
in the type of problems under consideration. The second one will be based on GP
(genetic programming) approaches that are central in the TRUST-AI approach
and that may potentially offer a much more transparent and explainable model.
The extraction of symbolic expressions, pertaining to the particular building is a further
added value potentially resulting from the GP approach. Such expressions can be
pivotal for building benchmarking, and provide new outlooks on building
characterisation.

Below is a description of the various models that have been elaborated.

4.3.2 Models based on the data from the winter months (Jan- Mar 2022)

Models developed for this period are tabulated as shown below: Metrics for best
performing models (shown in yellow) will be discussed in the downstream.

COD
E

WINTE
R

SPRIN
G

FEATURES MODEL
TYPE

BEST
PERFORMI

NG

1 YES NO weekly consumption history [t-1, t-8] LSTM

2a YES NO weekly consumption history [t-1, t-8]
day of week [t+1]

LSTM

2b YES NO weekly consumption history [t-1, t-8]
indoor [t+1]

LSTM
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2c YES YES weekly consumption history [t-1, t-8]
day of week [t+1]
indoor [t+1]

GP/ LSTM

2c' YES YES weekly consumption history [t-1, t-8]
indoor [t+1]
day of week [t+1]
hour of day [t+1]

GP/ LSTM LSTM
WINTER

LSTM
SPRING

3a YES NO weekly consumption history [t-1, t-8]
day of week [t+1]
outdoor temp [t+1]
wind [t+1]

LSTM

3a NO YES weekly consumption history [t-1, t-8]
day of week [t+1]
outdoor temp [t+1]

LSTM

3a YES YES weekly consumption history [t-1, t-8]
day of week [t+1]
outdoor temp [t+1]
hour of day [t+1]

GP

3a' YES YES weekly consumption history [t-1, t-8]
ABS ( indoor- outdoor) [t+1]
day of week [t+1]
hour of day [t+1]

GP

GP WINTER

3a' NO YES weekly consumption history [t-1, t-8]
outdoor [t+1]
day of week [t+1]
hour of day [t+1]

LSTM

3a'' YES YES weekly consumption history [t-1, t-8]
ABS ( indoor- outdoor) [t+1]
day of week [t+1]

GP

GP SPRING

3b YES NO weekly consumption history [t-1, t-8]
day of week [t+1]
outdoor temp [t+1]

LSTM

3c YES NO weekly consumption history [t-1, t-8]
day of week [t+1]
wind [t+1]

LSTM

4a YES YES weekly consumption history [t-1, t-8]
day of week [t+1]
outdoor temp [t+1]
indoor [t+1]

LSTM

4b YES NO weekly consumption history [t-1, t-8]
day of week [t+1]
wind [t+1]
indoor [t+1]

LSTM
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4c YES NO weekly consumption history [t-1, t-8]
day of week [t+1]
outdoor temp [t+1]
wind [t+1]
indoor [t+1]

LSTM

4a' YES YES weekly consumption history [t-1, t-8]
day of week [t+1]
outdoor temp [t+1]
indoor [t+1]
hour of day [t+1]

LSTM

5 YES NO same day of past week consumption [t-6] LSTM

6a YES NO same day of past week consumption [t-6]
outdoor temp [t+1]

LSTM

6b YES YES same day of past week consumption [t-6]
outdoor temp [t+1]
day of week[t+1]

LSTM

7a YES NO same day of past week consumption [t-6]
outdoor temp [t+1]
indoor [t+1]

LSTM

7b YES YES same day of past week consumption [t-6]
outdoor temp [t+1]
indoor [t+1]
day of week [t+1]

LSTM

7c YES NO same day of past week consumption [t-6]
indoor [t+1]

LSTM

7d YES NO same day of past week consumption [t-6]
indoor [t+1]
day of week [t+1]

LSTM

8 YES YES indoor [t+1]
day of week [t+1]

STS STS WINTER
STS SPRING

8' YES YES indoor [t+1]
day of week [t+1]
hour of the day [t+1]

STS

4.3.3 Discussion on models based on the data from spring months (Apr- Jun
2022)

Following evaluation of the first three months analyses (winter data) some decisions
were made on the following grounds:

First, we needed to stop investigating models that did not seem feature-wise to perform
well so that we would be able to focus on less and more promising models. To this
extent in the spring period we restricted and developed only the following models.
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Detailed LSTM/ STS model list for the spring data (first part)

1. Μοdel 2c : trained on: weekly consumption history [t-1, t-8], day of week [t+1],
indoor

2. Μοdel 3a: trained on: weekly consumption history [t-1, t-8], day of week [t+1],
outdoor [t+1]

3. Μοdel 4a: trained on: weekly consumption history [t-1, t-8], day of week [t+1],
outdoor [t+1], indoor [t+1]

4. Μοdel 6b: trained on: same day of past week consumption [t-6], outdoor [t+1],
day of week[t+1]

5. Μοdel 7b: trained on: same day of past week consumption [t-6], outdoor [t+1],
indoor [t+1], day of week [t+1]

6. Model 8: STS model

Second, we considered it useful to start including the impact of ‘hour of day’. To
this extent the following new models were developed. These models are coded as above
and we use the (') to denote the additional feature used (hour of day)

Detailed LSTM/ STS model list for the spring data (second part)

1. Μοdel 2c': trained on: weekly consumption history [t-1, t-8], indoor [t+1], day
of week [t+1], hour of day [t+1]

2. Μοdel 3a': trained on: weekly consumption history [t-1, t-8], outdoor [t+1], day
of week [t+1], hour of day [t+1]

3. Μοdel 4a': trained on: weekly consumption history [t-1, t-8], indoor [t+1],
outdoor [t+1], day of week [t+1], hour of day [t+1]

4. Model 8': STS model (features used), hour of day [t+1]

Third, we needed to look further into GP models, both for winter and spring . The
plan was to develop GP models along the following:

● Consider model 2c
● Consider model 2c with the spring data and also introduce the hour of the day

(model 2c')
● Consider model 3a' (like 3a but with the spring data and also introducing the

hour of the day)
● Consider two additional models, variants of above 3a' (3a'' and 3a''') where both

indoor and outdoor temperatures would be included via a single feature,
their ABS difference, which is essentially what drives the HVAC consumption.

4.3.4 Data and Model public Access (building case)

Data and Models are and will remain publicly available and update continuously at

https://drive.google.com/drive/folders/1Y7mwyrW_4FsKnHHW
MHhzmpBr7XPZ4-U1?usp=sharing

There are several folders therein. Models are included in the folders
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● GP
● NN LSTM
● STS

Whereas, data is included in the folder

● DATA

4.3.5 Seasonal Analysis

A seasonal analysis of the two trimester datasets is presented below. This allows us to
get a better feeling of the data and how they evolve in time.

a. Plotting Winter/ Spring data

The below plot shows active_electricity, indoor temperature and outdoor_temperature
for winter and spring data, respectively

Figure 6: Plotting the winter data
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Figure 7: Plotting the spring data

b. Daily patterns (seasonality)

The daily seasonality patterns are shown below for winter and spring data respectively.
As one can see the winter data has a very strong repeating seasonal pattern, which
almost repeats throughout. Only at the onset of April the pattern has shorter peaks.

In spring the seasonal pattern between the end of April to mid May shows lower
consumptions, the reason being clearly visible in Figure 9(as indoor temperature is at a
level that no significant cooling/heating is needed). From the end of May the spring
seasonal patterns in electricity consumption becomes somewhat similar to winter data as
the use of cooling appliances increases with increase in indoor temperature, just like
heating appliances caused higher consumption in winter.
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Figure 8: Winter data active electricity data decomposition for viewing daily
seasonality patterns

Figure 9: Spring data active electricity data decomposition for viewing daily
seasonality patterns

c. Weekly patterns (seasonality)

The weekly seasonality patterns are shown in figures 11 and 12, for winter and spring
data respectively. As we see here the winter data consumption with weekly periods also
exhibits a very strong repeating seasonal pattern, which almost repeats throughout.
April has differences in the pattern, as also observed in daily patterns. Here too, in
spring consumption data between April end to mid May shows lower consumptions like
in daily seasonality. From the end of May the seasonal patterns in spring electricity
consumption becomes almost similar to winter data. The trend component shows that in
winter the consumption decreases as spring approaches, whereas in spring the trend has
an increasing pattern, because the indoor temperature also exhibits a similar behaviour
leading to increased electricity consumption by cooling appliances.
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Figure 10: Winter data active electricity data decomposition for viewing weekly
seasonality patterns

Figure 11: Spring data active electricity data decomposition for viewing weekly
seasonality patterns

d. Decomposition over week / day

As seen in Figure 12, the seasonal component plot here shows that the electricity
consumption exhibits an expected seasonal pattern showing valleys on weekends (2nd

and 3rd April) due to lower consumption on weekends in offices.
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Figure 12: Spring electricity consumption decomposition over one week (01-08 April)

As seen in Figure 13, the seasonal component shows increased electricity consumption
during peak office hours and valleys during non-office hours.

Figure 13: Spring electricity consumption decomposition over a day (1st April)

4.3.6 The LSTM/ STS baseline

We illustrate below results extracted from the 2c notebook. This is one of the preferred
approaches as it includes an actionable feature 'indoor'. illustrated, it includes various
sub models, for example alone a baseline, naïve model, a linear model, a LSTM model
and several more.
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Figure 14: LSTΜ 2c model

Overall it can be seen that there is a significant increase in prediction accuracy when
compared with the naive models.

4.3.7 Benchmarking the LSTM, the GP and STS models

A number of metrics (RMSE, MAE, MAPE, MSE) has been used for the evaluation of
all models. Here below we will present some key results and graphs of these models,
mostly focussing on the accuracies achieved in each case. A discussion closes the
section.

We present below some comparative results as regards the 2c model as for three
different methods

● The NN/ LSTM based approach
● A GP based approach
● A STS (structural time series) based approach

Figure 15: LSTM accuracies/ 2c model
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Figure 16: GP/ 2c model

Figure 17: STS accuracies of a LSTM model trained on spring data

We compare below the results obtained from LSTM, GP and STS models trained and
tested over spring and winter electricity consumption data, by using the feature
combination that in each case appeared to be the best performing, with relatively best
metrics based on the results obtained. This optimum feature set is as follows:

● for the LSTM models:
o LSTM_Spring (over spring data): The feature set denoted as 2c’.
The LSTM models have been trained with split as per: 0-70% training
set, 70-85% validation set, 85-100% test set.
o LSTM_Winter(over winter data): The feature set denoted as 2c’.
The LSTM models have been trained over winter data with split as per:
0-40% training set, 40-50% validation set, 50-100% test set.

We use a window of past 7 days consumption to predict 24 values of the next
day

● for the GP models:
o GP_Spring (over spring data): The feature set denoted as 3a’’.
The GP models have been trained with split as per: 0-85% training data
and 85-100% testing data.
o GP_Winter (over winter data): The feature set denoted as 3a’.
The GP models have been trained over winter data with split as per:
0-50% training data and 50-100% test data.

The criteria used for fitness is RMSE.

● for the STS models STS_Spring and STS_Winter: the feature set denoted as 8
for both spring and winter data. The STS model’s performance with a one-step
predictive model is better as compared to forecasting ahead a given number of
time steps.
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Follows the benchmarking with regard to the MAPE, RMSE, and MAE metrics.

MAPE

As we can observe MAPE wise here STS one step predictive model performs best
amongst the three with 12.92% MAPE for STS_Spring model and 18.25% MAPE for
STS_Winter model, followed by GP, whereas LSTM shows the poorest performance as
per MAPE.

RMSE

With regard to this metric the STS_Winter and STS_Spring models again show the best
performance closely followed by the GP_Spring model, the GP_Spring model lags
behind STS_Spring model by 3.6%. Whereas here the LSTM_Winter model shows
comparatively better performance as compared to GP_Winter model.

MAE

According to MAE, the STS_Spring and STS_Winter models again show the best
performance, whereas the GP_Spring model follows and LSTM_Spring is again the
model with the worst MAE among the three. Although LSTM_Winter is lagging behind
GP_Winter by minimal difference as seen here.
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4.3.8 Discussion and Conclusions

Following this modelling benchmarking across LSTM/GP and STS approaches as in a
synopsis provided in the above figures one can reach the following conclusions:

● The GP approach significantly outperforms the LSTM approach that it
typically used for the forecasting purpose. All three metrics used clearly show in
this direction.

● STS models appear to perform slightly better than the GP approach when
forecasting an hour ahead. However when forecasting the full next day
again GP outperforms STS.

● As we did not find any performance advantage on the side of LSTM so this
modelling approach will be discontinued from further experimentation.
Performance is lagging well behind and if we add to this the obscurity of the
approach and its black box nature there appears little sense in persisting in this
direction. We may only test the so-called transformer models, which are
considered successors to LSTM models and have a very good performance
history with NLP tasks which are also textual sequences, the attention
mechanism might prove helpful to model our time series data too. On the
contrary, STS will be further kept in the benchmarking as its performance is
well acceptable.

● The symbolic expressions associated with the GP models are very long and
counter intuitive. To this extent, the explainability potential is not really
obvious nor harnessed. One needs to 'prune' this expression aiming at arriving at
more intuitive and workable expressions. This important exercise will be carried
out when the TRUST AI framework is available, towards the end of 2022.
Ideally we would be able to arrive at compact, seasonal expressions that would
not significantly compromise accuracy. This however remains to be seen.

● The whole exercise needs to be repeated in other seasons in order to reach
safe conclusions applicable throughout the year. Not all models presented
above need to be re-elaborated in the coming seasons. However some new
features (e.g., hour of the day) are worth exploring.
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● Some causality elaborations are currently ongoing in a parallel thread and
their results may again impact upon the select optimum feature set and the
related modelling

Insights gained for next modelling steps

1. For the GP models we currently use only (+, -, *, /) operators. It would be
important to also experiment with operators like sin, cos, min, max, square
root, log or other custom ones, for getting more variations with symbolic
expressions.

2. It is suggested that this GP operator selection and elaboration should be
carried out within the upcoming TRUST AI framework , where we will be
able to gain insight in the symbolic expressions, especially in the direction of
pruning them into explanatory expressions. The trials could be carried on both
on available winter and summer data as well as upcoming summer data
(available end of September ‘22)

3. Transformer models will be tested on the autumn data to see if they provide
any noticeable enhancement over LSTM which, as said above, will be
abandoned in the upcoming modelling

4. For the STS Model we currently observe the performance over a one-step
predictive model which looks at all observations up to time T-1 to predict time T,
which is different from our window in GP and LSTM which looks at 7 days
consumption history to predict. It should be changed in accordance with the GP
model.

5. There are some differences in the modelling which in the next seasons need to
be addressed so a fully common baseline is established. Follow some details on
this aspect.

The current approach:

As per the approach used with GP models currently, we are generating one step ahead
forecast but in a rolling manner, so to predict 15.04 00:00 we are using consumption and
indoor temperature values from 08.04 00:00, as seen in the image of the rolling window
used below. This is from the model you had shared earlier. Note: active_electricity is the
target variable and active_electricity_weekly is the input variable.
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Current approach; weekly consumption history models

As seen in the image below, to predict 17.04 00:00 we are using consumption history
from 09.04 00:00 to 16.04 00:00 (7 days consumption history). Note: active_electricity
is target variable and active_electricity_192 is input variable.

So as per our current approach we are getting the forecast value for one step, not 24
steps as a vector, which is what we are getting with LSTMs. Gplearn does not
support multi-output in an inbuilt manner, whereas neural network support vector
outputs too, so multi-output support is inbuilt there.

Likely solutions:

If we want to predict 24 values multi-step output with gplearn we have two options
either we use a recursive forecast strategy or a direct forecast strategy. In a recursive
forecast the model will predict one time step and pass the prediction back as input in the
rolling input window. One main problem here can be that errors propagate. The second
option can be direct forecasting where we have 24 different models that are trained to
predict 24 different timesteps given the same input window, ex: one to predict timestep
00:00, another one to predict timestep 01:00….23:00. We will opt for the recursive
approach, to that we end up with just one model on whose expressions we can
focus our attention.
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5. The long term/country level
solution approach

5.1 Overview
Investigations in this context aim at policy support, in a more mid-term horizon,
addressing and supporting decisions in investment planning and energy pricing. In
our approach we have started by developing a forecasting baseline, by means of a
mixture of statistics and NN modelling. Also, by introducing some first local
explainability/ counterfactual approaches.

Global GP approaches (i.e., symbolic expressions) are to be introduced in the near
future.

Although in the respective literature there are a number of AI approaches pursued, it is
interesting to note that the concept of interpretability and explainability has been up to
this moment completely lacking. Our work in this is introduced and published for
the first time ever such notions in the scientific literature and in particular for the
residential domain, although the same concepts are currently also transformed for
transport related energy.

Various possible approaches to model the explanatory variables used have been
considered; the end goal extended beyond model accuracy; it expanded also to
interpretability and counterfactual concepts and analysis, aiming at the development of
a modelling approach that can provide decision support for strategies aimed at
influencing energy demand.

Thus, the explainability approach pursued was for the moment that of local/
instance level and more specifically about counterfactuals. Indeed, we addressed an
important, and strongly controversial literature; how can pricing affect final total
consumption of electricity consumption). Price was identified as the only essentially
actionable parameter of these models; therefore it is susceptible for counterfactual
analysis: what is the minimum residential energy price change required to reach a
specific consumption level?

After models have been developed also for the transport and the industry case (currently
working on them), state of the art ensemble counterfactual analysis will be possible
that will allow to address the question: what is the minimum energy price change and in
which specific sector (residences, transport, industry) required to reach a specific
consumption level? We have explained this approach in Figure 3.

Mid-term forecasting of final energy and electricity for the residential sector has been
addressed in six EU countries (Germany, the Netherlands, Sweden, Spain, Portugal and
Greece) based on data sourcing that is described below.
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5.2 Feature engineering
Feature engineering abided by the following criteria.

● We sought to include all major ‘causes’ of consumption ; we also tried to
include only one feature for every ‘cause’, avoiding double counting. Similarly,
we considered ‘causes’ as independently as possible, avoiding semantic
overlapping as much as possible. The statistical pre-processing of the data
before moving into AI was helpful in this direction.

● We restricted the investigation to those features that are particularly
relevant to our use case and its mid-term timeframe. For example, we will
not include any dematerialisation features, such as that attempted by Sun J.W.
[5], on the grounds that this will not significantly manifest over the mid‐term,
which is our key concern here.

● We placed a special interest in actionable features, i.e., features we can tweak
and act upon. This is important in the case of decision support. For example,
weather parameters are not actionable. They may significantly affect
consumption, and may therefore fulfil above criterion 1 and deserve inclusion in
our models; however, from the decision support perspective they cannot be acted
upon.

● Finally, data availability was also important and posed some important
constraints. In a short-term investigation, we always have the option to generate
the data we consider essential; in our mid-term timeframe, there is little chance
to do so. One has to rely on data that can already be registered and trusted.

The feature selection process has been extensively presented in the paper referenced
above. We will not repeat it below and restrict to just presenting the final selection
without discussing the selection process.

Table 2: Candidate features for the forecasting

Data was collected from two sources; EuroStat and the Odyssey Mure, a EU database
on energy. It is interesting to note that this extensive data collection resulted in
several data sets that were publicly shared on OSF (www.osf.io).
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5.3 Modelling approaches
Running a model on so many features does not seem a prudent approach. It is certain
that several of these features are strongly interrelated and therefore collinearity will be
present.

The analysis that follows below aims at isolating the most promising features. Arguably
no matter how much we have tried to define independent features, there will still
be many interdependencies among them, something that will manifest in terms of high
collinearity indices. Thus, a number of trials were necessary to end up with the minimal
set of features, providing a satisfactory model while suppressing collinearity. The data
approach will be discussed below.

The statistical analysis was carried out in JASP. Various feature combinations were
tested and a minimal set was retained. No counter-intuitive coefficients showed up in
the regression equation; no special action or elaboration was therefore necessary as
regards this important aspect of the forecasting. Additionally, a further important
consideration was to retain only features that entered the equations with a low p-value,
signalling a good statistical significance of it. Furthermore, features that, upon
inclusion, displayed a high collinearity as reported by the SVI indicator were excluded.
Collinearity means that the introduction of a new feature does not introduce
independent information; it is somehow already correlated with one of the other
predictors.

Following this approach we achieved to reduce the candidate features to, in most cases,
three. Table 5 and Table 6 in the footnote 1 reference (pages 9 and 10) paper
summarises these results along all the R2, VIF and p-values that, all together, highlight
the appropriateness of the selection made.

5.3.1 The neural network prediction model

Following the above analysis, we constructed neural network models based on what
the statistical analysis revealed as the best predictors. In this way, statistical analysis
served as a first level of result interpretability, allowing us to highlight and gain insight
into the inferences in place. After this, the prediction power of NNs was called upon to
calculate prediction accuracies.

The Tensorflow machine learning library was used to assist this investigation. Neural
networks were created with the above-discussed input and output layers, with two
hidden layers in-between. The data were split in two parts; 70% were used as training
data to develop the model and 30% as testing data to calculate its accuracy. The results
and accuracies are summarised presented in the following table.
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Table 3: Performance of neural network-based forecasting models for all 10 cases
investigated (4 for final consumption and 6 for electricity).

5.3.2 The counterfactual approach

A possible important decision that could be supported by means of the above
investigations would be:

‘What is the best action that I should take in order to achieve an x% reduction of
greenhouse emissions in the mid-term horizon?’

Such questions are typically addressed using counterfactual analysis. A counterfactual
explanation of a prediction describes the smallest change to the feature values, which
changes the prediction to a predefined output. Counterfactual analysis is also referred
to as local interpretability in the sense that it does not aim to propose some general
surrogate and more transparent model in the place of the typical black box of the neural
network. Instead, it aims at addressing ‘what if’ type questions and finding the
minimal tweak of the model features that could secure this new goal.

A first step towards interpretability is the selection of features via a statistical analysis,
as shown above. This process allows us to gain insight into what really matters. An NN
model would not provide any such service. A next step for local interpretability
would be to lay out a counterfactual analysis allowing us to address questions such
as the one above. If we are to realistically tweak model features to perform ‘what
if’ analyses, it is critical to identify the actionable features. One cannot possibly
change the weather by reducing the GDP/capita. In our case, the only possible
actionable feature pertinent to our decisions here is that of energy taxes. Indeed, taxes in
our analysis appeared in most cases as a key driver of consumption.

At this point, we should recall that there is an ongoing debate in the literature as to
if and how much taxes can affect consumption. First, we have to acknowledge that
not all societies respond in a similar way to taxes. Then there is always the possibility
that there is a confounder to taxes; some other parameter that is truly causing the
change, but as it moves in line with prices, one may end up with the wrong impression
that it is prices that are driving consumption. Along this line of thought, a good example
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is provided by Borestein Severin6, who is in favour of using the energy pricing
mechanism. He argues: ‘accounting for externalities requires introducing the 50
USD/ton CO2. The trend that taxes have shown convinces this will have an impact.
Perhaps not direct—by immediate behavioural change—but by long-term driving for
more innovation.’ Indeed, prices bundle together three types of impact: the immediate
behavioural response, a gradual behavioural change, and an impact on innovation.
Perhaps the immediate response is not as strong, and perhaps this is why in the
literature, there is often a claim for an essentially inelastic demand. However, how
inelastic can demand be to price if it can trigger innovation or more mid-term
behavioural shifts? Can we really claim that consumption is inelastic to prices if prices
are driving innovation?

Below, we perform some counterfactual analysis on the results achieved via
tweaking energy price/taxation. The table below illustrates the taxation change that
would result in a 5% reduction of consumption in the seven cases overall, where
taxation was found to be a driver of consumption. Both linear regression and NN
models are reported.

a. What-If Scenario for a 5% Decrease in Final Consumption via
Taxation

We present below the results of the taxation counterfactual analysis for both modelling
approaches (linear regression, NN) for the case of final consumption . Taxation
appeared to be an important predictor in all four cases investigated for residential
final consumption and electricity.

\
Table 4. Results of the counterfactuals analysis on the taxation for both the linear
regression and well as the NN models. The case of residential final consumption.

b. What-If Scenario for a 5% Decrease in Electricity via Taxation

Follow below the results of the taxation counterfactual analysis for both modelling
approaches (linear regression, NN) for the case of electricity.

6 Borestein Severin, Calculating the Effect of $50/tonne CO2 on Energy Prices, Energy Institute Blog,
2019, UC Berkeley. Available online: www.energypost.eu (accessed on 4 July 2021).
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Table 5. Results of the counterfactuals analysis on the taxation for both the linear
regression and the NN models. The case of residential electricity.

Above, we have restricted the analysis to households. However, imagine we could have
similarly constructed models for the other two broad categories of energy consumption:
transport and business/industry. In this case, our decision would also be informed by the
other two models and would require cross model counterfactuals, able to tweak all
actionable features they may include, to find the least change and action required
in order to achieve our end goal, as articulated at the beginning of this section. It
would be able to support energy policy decisions in a much more comprehensive way.
One should also note that while the residential counterfactual presented above is, from a
technical point of view, easy to elaborate and implement, this multi-model-ensemble-
counterfactual would represent an AI challenge and will be a key area of investigation
in the coming period.

5.3.3 Data and Model public Access (country case)

The residential energy datasets compiled for all investigated countries are available
publicly online at

https://osf.io/vtzw8/

The files that can be found at this URL there are .jasp files and include besides the raw
data itself also the JASP Statistical pre-processing (described above).

Models are and will remain publicly available and update continuously at

https://drive.google.com/drive/folders/1Y7mwyrW_4FsKnHHW
MHhzmpBr7XPZ4-U1?usp=sharing

In the folder /COUNTRY ANALYSES

5.4 The next steps in the country/long-term
sub case
Although the domain specific approach described above for the residential domain has
some per se significance and can yield interesting and policy pertinent results, the
ability to treat all three domains, residential, transport and industry in one
common framework and to run ensemble counterfactuals would represent a
unique achievement. There are a number of preliminary steps that would come with
some independent value but would also create the conditions to culminate to this major
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development. Here is a summary highlighting the steps forward in this particular use
case.

1. The statistical pre-processing is methodologically essential for all three domains
and is an element of the overall explainability oriented approach; at the moment
the residential and the industrial domains have been elaborated and have also
been published. The transport case is currently in elaboration and will
complete some time in 2023.

2. The NN analysis, illustrated above in the case on residences presents some
tangible benefits that have been harnessed in terms of higher accuracies as
shown above. Also, it is important that a counterfactual perspective has been
feasible and has yielded interesting results. This said, NN is not the best
possible approach for explainability; GP and symbolic expression
approaches, which are key in TRUST-AI, should be tested to see if some
comparative advantage can result.

3. The NN approach has been initially implemented in a proprietary environment
(leiminte) and is not as transparent as it should ideally be. We are completing
the process of overhauling the discussion and replicating it in a more open
environment (jupyter notebook) similarly to what has been done in the
other subcase. The URL is provided above, in 5.3.1. This is in line with the
open data approach underpinning the use case and the project overall, and the
will to publish fully transparent data and methods.

4. Last and most importantly, all above would allow the implementation of an
ensemble counterfactual across the three domains, as presented in several
above instances and illustrated in Figure 3, would represent a major
advancement of the state of art in this thematic area. For this, we will need to
complete all above points; in summary:

● to complete point 1 above; transport analysis and models
● to complete point 3 above; generate all models as open jupyter files
● to complete point 2 above; develop open GP models preferably in the

TRUST-AI framework so that we may make use of its expression
pruning capabilities

6. Interaction and validation with
business experts

As of late '21 we have established an energy expert group, comprising four experts.
Recently this has been expanded with two more experts. The selection has been done on
the following grounds:

● deep awareness of the building energy / ICT issues from a business point of
view

● close and tested business relationships, ease of communication and a lack of
any potential conflict of interest

● potential for collaboration in the exploitation of results (this applies
particularly to the two 2022 experts)
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The first interaction with the first batch of the 4 experts (referred to in detail in D 2.1)
occurred via questionnaires and- especially- in depth, 1 hour online interviews, to which
other TRUST AI partners also participated (Un. Tartu). The aim of this interaction was
to collect general specification and orientation insights. The main takeaways from this
interaction (reported also in D 2.1) was as follows:

● Focus on the feature importance and effort to convey this convincingly to the
users, also by means of simple and effective user interfaces.

● Focus on counterfactual analyses on actionable parameters and again effort
to convey this convincingly to the users, also by means of simple and effective
user interfaces

● Additionally, scepticism was expressed as to the potential of symbolic
expressions to capture the phenomena; the issue was considered interesting
but the eventual possibility of such concise and meaningful expressions rather
unlikely given the complex and nonlinear phenomena involved.

Towards mid' 22 the discussions were resumed with these same experts based on the
results delivered at that moment in time. In fact, some first results on GP and symbolic
expressions were made available, while the investigation on feature importance and
counterfactuals had not yet started. This second round of discussions yielded the
following feedback.

● The issue of fast training was raised as it was considered that monthly training
data (the modelling till that moment in time has a training set spanning over 45
days). This was a highly value adding discussion raised by Mr. Alfio Galata but
validated by all experts. Indeed for a practical demand response controller (that
is the end product embedding all the modelling issues) such long training data
would be a deficiency.

○ The suggestion was made and the action was taken to shorten the
training time-frame (to 7- 10 days) and investigate the impact on
accuracy. This does not prevent having more accurate models evolving in
time. It would, however, allow the controller to become fastly
operational, something of high deployment value. This proposal was
immediately sent for implementation and some first results have been
released even by the time of the first review, although the investigation is
ongoing to reach definite conclusions.

● The GP models and their symbolic expressions were discussed. These
models, for the first time even developed in the literature, surprisingly came
with a higher accuracy (!) than the mainstream NN models used. However as
suspected the expressions were not meaningful and did not add much to the
user's insight.

○ The suggestion was made and the action was taken that- just as
proposed from the first round of contacts (late '21)- the focus should shift
to local/ instance explainability and not expect much from global model
explainability and symbolic expressions. Dr. Hadjiyannis (whose
business has activities in broad building AI) in particular suggested to
look into the SHAP potential that was suggested and a model agnostic
approach SHAP approach. This suggestion has been fully already uptake
and it is currently the keyfocus of the investigation. This is illustrated
also in the publication currently in preparation where the SHAP topic is
highlighted even in the abstract.
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https://docs.google.com/document/d/1YUDf9akHtitgCCOXbcQUov5gs
OvZglpMZ6_oQFjpMUQ/edit?usp=sharing.

○ However, as APIN we also suggested not to discard but to to further
investigate in the potential of symbolic expressions especially as the
TRUST AI framework would allow to easily carry on such
investigations.

● An important remark was raised with regard to the potential of
explainability, and the encompassing demand response controller, in the
residential context. Indeed this suggestion was even raised in the first round of
discussions so it was rather reiterated at this moment in time. Indeed the
residential context is highly important and an excellent ground for demand
response schemes. However, it is far more difficult than the office context, as
energy uses are far more ad hoc and unpredictable; thus, the modelling approach
needs to differ

○ The response was given that the residential context will be
investigated. As APIN we have numerous related installations so the
data collection would not require to repeat a yearly data collection.
However, we are still uncertain if it is wise to diversify also in this
context and not proceed full speed in the office context. Thus, although
the suggestion is fully appreciated in its potential we will need to discuss
this issue within the consortium to see what the modelling options could
realistically be. In any case, given the data easily available, some
trialling will in any case be attempted.

6.1 The future of expert interaction
A next round of expert discussions is planned for spring 2023 when

● SHAP approaches will have been tested and related results sent for
publication

● more insights will be available on symbolic expressions
● a concept for expanding to the residential concept will be available
● a first approach to counterfactuals will have been elaborated and also tested

either independently or even better in the TRUST AI

6.2 Expert validation on exploitation
As of late '22 we have established an early exploitation related contact with a major EU
energy technology provider https://energy.ubitech.eu/.

The company has expressed strong interest in the broad approach and it was agreed to
have a number of bilateral meetings (currently ongoing) to cross fertilise concepts. We
have decided to develop pitching videos and presentations as a basis for clearly getting
across what TRUST AI Energy is about and allow us to present it to broader
exploitation oriented venues.

43

https://docs.google.com/document/d/1YUDf9akHtitgCCOXbcQUov5gsOvZglpMZ6_oQFjpMUQ/edit?usp=sharing
https://docs.google.com/document/d/1YUDf9akHtitgCCOXbcQUov5gsOvZglpMZ6_oQFjpMUQ/edit?usp=sharing
https://energy.ubitech.eu/


Use Case 3 - Energy

At this moment there are some important aspects not clarified in order to package and
get across the business message; especially whether we will engage with the residential
context (see discussions above), something that will largely affect the business plan.

The plan is to have this early business visibility in place by mid ‘23 at which moment
we will leverage the ongoing discussion with the above mentioned provider.

6.3 Interacting with facility managers
We have had the opportunity to discuss some aspects of the work in TRUST AI with
facility managers in buildings where we have data collection setups via our building
management systems. The overall conclusion is that these users not only understand but
intensely demand incorporation of demand response aspects in their setups. This
provides some validation of the orientation of the project.

Yet, we have not yet raised explainability within this particular audience. Facility
managers understand what demand response is, they also understand what the
associated risk is. Now, the idea that explainability will mitigate this risk is not really
understood.

Overall we plan to interact with experts from the facility manager community we have
access to, but only when a visible and tangible solution is there to show. This is
planned for early '24 when a fully fledged prototype is aimed at.

7. Conclusions
Below we discuss the next steps in the use case, as well as its integration within the
TRUST-AI framework.

7.1 Roadmap and future developments
in the Use Case

Follows below a roadmap of the upcoming developments as regards the Energy Use
Case.

No Month/
Year

Activity

THE SHORT TERM SUB CASE

Modelling; short term

1 02/ 2023 Elaborating of seasonal office building forecasting models & symbolic expressions (4)
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2 02/ 2023 Experimenting with additional features (calendar days, etc.)

3 02/ 2023 Elaboration of counterfactuals/ explanations

Evaluation & Decisions; short term

4 06/ 2023 Benchmarking of the GP against the NN models; accuracy and explanatory potential

5 06/ 2023 Local explainability; counterfactuals

6 06/ 2023 Global explainability; using TRUST AI framework to prune symbolic expressions
derive building level/ seasonal/ yearly symbolic expressions and evaluating their global
explainability potential

Integration; short term

THE LONG TERM SUB CASE

Modelling; long term

7 12/2023 Derivation of NN/ GP models for transport and industry in our six countries

8 06/2024 Elaboration of ensemble counterfactuals for the country level forecasting

9 12/2024 TRUST AI framework integration; pull models/ explanations in production
environment- country case

7.2 Linking to the TRUST-AI
Framework

POLIS-21 is currently developing in Korea a demand response controller. Although this
is independent of TRUST-AI elaborations, it can nevertheless serve as a quality testbed
for testing the added value of explanations in energy related use cases. In addition, as
this development runs quite in parallel to TRUST-AI the timelines are quite well aligned
for the testing. The figure below illustrates the four components of the solution and
how they fit together.
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Follows a short description that will also highlight the well defined link to the
TRUST-AI framework.

Figure 18: A true environment for testing the added value of GP models and
explanations in energy apps

● Component 1 (WT) is the commercially available solution that has been used
for real-time, field data sourcing in the pilot building

● Component 2 (DS) is a middleware solution developed in D 1.2 and accessible
online at https://ds.leiminte.com. The purpose of this middleware is to provide
for open data access, via its documented API. Thus, instead of feeding in the
end solution (Component 4) proprietary data from Component 1 one will be able
to export his data to Component 2 and then Component 4 will be able to read
them. This is an important contribution to open access approaches that will
be heavily published and promoted as a key result. Via this platform all the
data used in the modelling will be shared with third parties who would like to
use them in their developments.

● Component 3 (TRUST-AI framework) is the workbench where models and
respective explanations will be developed. DS, being an open platform, will be
able to export data to TRUST-AI as shown in the figure above.

● Component 4 (util- AI) is an in-process, in development (and unrelated to
TRUST-AI solution) that looks forward to receiving models/ explanations from
TRUST-AI and thus enhancing in value and functionality. Util-AI has been
perceived as an environment running on an embedded and hardwired NN model.
The ability to

○ use TRUST-AI to support model flexibility (instead of a hardwired NN
model) and

○ attach respective explanations, along with what has been discussed
above

will significantly increase its value. UTIL-AI will increasingly be used for
running models in the period ahead and hopefully interfacing with TRUST-AI,
as well as DS.
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● Elaborating (especially pruning and customising) symbolic expressions

and

● Exporting models and their associated explanations to a productive environment

are the two key points where TRUST-AI and the Energy Use Case connect and interact.

Indeed, the TRUST-AI framework is conceived in the work-plan as a standalone
environment. APINTECH commits to undertake this additional interfacing work
(pulling in data and pushing out models & explanations elaborated, provided

● the pertinence to the project and the added value is agreed by all
● IP rights issues are resolved

8. Recommendations
Below we list the three types of requirements that the Energy case would set to the
TRUST AI framework.

Model & Explanation sourcing; The Energy instance requirements

A) Models' training (Framework service)
● manual data (clean) upload
● model training
● symbolic expression pruning
● model/ symbolic expression finalisation
● explanatory insight of symbolic expression assessment (Y/N)
● model/ symbolic expression saving
● model/ symbolic expression management
● classify as subtype (e.g. seasonal)
● delete model

B) Explanation development (Framework service)
● counterfactual definition
● counterfactual implementation
● explanations issued
● explanations saved

C) Model export to production environment (APIN)
● select model/ explanations
● export model/ explanations to production environment (UTIL AI)

Indeed, one can note that the Energy Use Case does not have any specific requirements
as regards user interfaces as these will be separately implemented in the UTIL AI. UIs
are of high importance and a generic approach can never be adequate when a business
plan is in mind.
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Reversely there are some aspects and functionalities for the framework that were not
initially included in its specification (noted above under C) above). These are
imperative for the Energy UC as we plan to eventually use these models and
explanations not in TRUST AI itself but in a production environment, UTIL AI .

As APINTECH we have offered to implement this additional import/ export
functionality provided it is considered of a broader utility to the other Use Cases and
beyond.

9. Annex- open data and published
work

Work till now has produced the following open publications. Additionally there is a
significant amount of data and models that have been openly shared as disclosed above
in 4.3.4 and 5.3.3 for the two sub use-cases respectively

9.1 Journals
1. Sakkas, N.; Yfanti, S.; Daskalakis, C.; Barbu, E.; Domnich, M. Interpretable

Forecasting of Energy Demand in the Residential Sector. Energies 2021, 14,
6568. https://doi.org/10.3390/en14206568

Introduces the concept of local interpretability/ counterfactuals analysis for the
EU household sector, based on data for 5 countries (DE, NL, PT, ES, GR).

2. Sakkas, N., Yfanti, S. (2021). Open data or open access? The case of
building data. Academia Letters,Article 3629.
https://doi.org/10.20935/AL3629.

Discusses open data issues and management as they pertain to the Energy Use
Case.

3. Sakkas, N., Athanasiou, N. (2021). Drivers of and counterfactuals for the
final energy and electricity consumption in EU industry. Academia Letters,
Article 3451. https://doi.org/10.20935/AL3451

Introduces the concept of local interpretability/ counterfactuals analysis for the
EU industry based on data for 5 countries (DE, NL, PT, ES, GR)

9.2 Conferences
1. N. Sakkas, M. Papadopoulou, D. Sakkas, Real time Data and Application

Sharing and Collaboration for the Building Energy Domain, World of
Digital Built Environment WDBE 2021, access link
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Discusses open data issues and management as they pertain to the Energy Use
Case.

9.3 Conference and Journal

1. Nikos Sakkas, Ch. Chaniotaki, Nikitas. Sakkas, Costas Daskalakis, Building
data models and data sharing. Purpose, approaches and a case study on
explainable demand response, Emerging Concepts for Sustainable Built
Environment, Helsinki, November 2022

Discusses the link between explainability considerations in TRUST AI and the
requirements of a demand response controller (UTIL AI)
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